

Failure Analysis Techniques

• 2 techniques used:

- Dye Penetrant
 - Exposes cracks cause by drop testing
 - Crack area, and direction
- Cross sectioning
 - Locates the layer in which the crack occurs
 - Identifies composition of layer cracks occur

Results Percentage of CSP Failure 90.0% Percentage of analyzed components 83.3% 80.0% 73.3% 70.0% 35% 60.0% 50.0% 40.0% 33.3% 30.0% 20.0% 10.0% 3.3% 1.7% 0.0% Board Side Pad Cratered I/O Trace Daisy Chain Chip Side Solder Crack Trace Solder Crack Fracture Fracture

**Note- Some components show more than one failure mode

June 19th, 2008

Pad Cratering and Electrical Failure

Solder Fracture Failure

Cross-sectioned solder joint is shown to be cracked near the board side copper pad

Solder Fracture Failure

- Cross-sectioned solder joint is shown to be cracked near the board side copper pad
- Copper trace failure also shown (left side)

June 19th, 2008

Cracking Under Pads (Cratering)

• Epoxy on the PWB board surface cracked away from the fibers within the board, allowing the copper pad to lift away from the board

-8-

June 19th, 2008

Cracking Under Pads (Cratering)

• Epoxy on the PWB board surface cracked away from the fibers within the board, allowing the copper pad to lift away from the board

Nichol

June 19th, 2008

Nicholas Vickers

0

Input/Output Trace Failure

- I/O trace gets stretched when the copper pad lifts away from the PWB
- If the copper pad lifts far enough away, then ductile failure occurs in the copper trace

I/O Trace Failure

- Input/Output (I/O) traces that connect to the daisy-chain 'resistor' were often broken
- Many components had this broken trace and no other identifiable failure

I/O Trace Failure Location

Failure Mode Comparison

- I/O Trace and Daisy-chain Trace failures are both caused by pad cratering
- Pad cratering was present on 88% of electrically failed components, and is directly responsible for 69% of electrical failures

SAC305 Solder Microstructure

Microhardness Testing

June 19th, 2008

Along Fiber Results

Along Fiber Strength

Along Fiber Modulus

Conclusions

- Pad cratering is the most common failure mode
- Pad cratering does not necessarily cause electrical failure, but can cause electrical failure by introducing other failure modes
- Dominance of pad cratering indicates that solder joints are not the weakest part of this lead-free assembly

Conclusions (Cont.)

- Tougher board material is needed to increase reliability
- Majority of failures occurred on the cable side of the board when DAQ cable is attached
- First failures usually occur in the corners of the CSPs
- Edge-bonding is effective at reducing pad cratering problems

Acknowledgements

- Cal Poly: Michael Krist, Kyle Rauen, Micah Denecour, Andrew Farris, Ron Sloat, and Jianbaio Pan, Ph.D.
- Flextronics: Dongkai Shangguan, Ph.D., Jasbir Bath, David Geiger, Dennis Willie
- Henkel: Brian Toleno, Ph.D., Dan Maslyk

Thank You. Any Questions?

SSMTA Surface Mount Technology Association -28-

June 19th, 2008

Dye Stained Solder Fractures

Dye stained solder fractures were found

- Partial solder fracture (left) was not completely fractured before the component was removed
- Complete solder fracture (right) was fully fractured before the component was removed

Fai	lures Aft	er 10 Dro	ops (No E	(B)
11	12	13	14	15
6	7	8	9	10
2 3 1 1 4	2	3	4	5
CAL POLY	June 19 th , 2008	Nicholas Vickers		SINTA Surface Mount Technology Association -3

Failures After 14 Drops (No EB)

11	12	13	14	15
6	7	8	9	10
2 3 1 1 4	2	3	4	5
CAL POLY	June 19 th , 2008	Nicholas Vickers		SINTA -32-

Failur	·es After	325 Drop	s (Epoxy	EB)
11	12	13	14	15
6	7	8	9	10
2 3 1 1 4	2	3	4	5
CAL POLY	June 19 th , 2008	Nicholas Vickers		SMTA Surface Mount Technology Association -3.

Blank PWB – No Cable vs Cable

- Symmetry of acceleration peaks has shifted (C7 vs C9)
- Maximums greatly reduced by cable (C3, C13, C8)

Populated PWB – No Edge Bond

• Dampening due to the cable seems less significant than with blank PWB (both graphs are more similar)

Epoxy Edge Bonded CSPs

- Stiffer board with edge bonding has less symmetry disturbance
- Overall accelerations are significantly reduced vs no edge-bond

June 19th, 2008

Acrylic Edge Bonded CSPs

- Stiffer board with edge bonding has less symmetry disturbance
- Overall accelerations are significantly reduced vs no edge-bond

June 19th, 2008