

Agenda

- Introduction
- Test Vehicle
- Failure Detection Systems
- Reliability Data
- Failure Analysis
- Local Acceleration on Component Location
- Conclusions

-2-

Prior Work

- Lead-free SnAgCu solders with various alloy additives (Syed 2006, Pandher 2007) and low-silver content (Lai 2005, Kim 2007) have been studied to improve drop impact reliability of solder joints
- Underfills (Zhang 2003, Toleno 2007) and corner bonding (Tian 2005) have been used to improve drop impact reliability

Purpose of this Study

- Compare the drop impact reliability of lead-free Chip Scale Package (CSP) solder joints, as determined by two different failure detection systems
 - In-situ data acquisition based dynamic resistance measurement
 - Static post-drop resistance measurement
- Determine the effects of edge bonding on CSP drop impact performance
- Further investigate the failure mechanisms of drop impact failures in lead-free CSPs under JEDEC drop impact test conditions

Test Vehicle

- JEDEC JESD22-B111 preferred board, 8-layer FR4, 132 mm x 77 mm x 1mm
- Amkor 12mm x 12mm CSPs, 228 I/Os, 0.5mm pitch, SAC305 solder bumps
- Multicore 318 LF 97SC (SAC305) solder paste

May 27 - 30, 2008

Andrew Farris

-5-

Edge Bond Materials

• Edge bonding 12mm CSPs

- Acrylated Urethane material
 - Cured by UV exposure for 80s using Zeta 7411 Lamp

• Epoxy material

• Thermally cured for 20min in 80° C oven

May 27 - 30, 2008

Andrew Farris

Failure Detection Systems

Compare two failure detection systems

- In-situ dynamic resistance measurement by data acquisition (DAQ)
 - Uses voltage divider circuit to relate voltage to resistance, and analog-to-digital conversion at 50kHz
- Post-drop static resistance measurement
 - Single resistance measurement taken after the drop

Agenda

- Introduction
- Test Vehicle
- Failure Detection Systems
- <u>Reliability Data</u>
- Failure Analysis
- Local Acceleration on Component Location
- Conclusions

-13-

Reliability Test Design

- Two failure detection systems
- Three acceleration conditions
- Edge-bonded and not edge-bonded CSPs

Failure Detection	DAQ System		Post-Drop System		
Edge-bonding	Yes	No	Yes	No	
900 G – 0.7 ms	0	3	0	3	
1500 G – 0.5 ms	4	3	4	3	
2900 G – 0.3 ms	4	1	4	0	

Table 2 - DAQ No Edge-bond

Accel (g)	900	900	900	1500	1500	1500	2900
Drops	75	75	100	70	40	60	50
Edge Bond	None						
Component							
C1				37	29		7
C2							25
C3	62				14	33	4
C4	26	26	34	26	6	23	4
C5							5
C6					21	35	3
C7					19		42
C8	28	44		50	3	13	7
C9					30		21
C10							
C11					5		11
C12	16	6	43	13	2	6	4
C13	15	11	40	9	1	5	2
C14					21	32	38
C15							50

Table 3 - Post-drop No Edge-bond

Accel (g)	900	900	900	1500	1500	1500
Drops	75	70	100	70	40	60
Edge Bond	None	None	None	None	None	None
Component						
C1			82	55		38
C2						22
C3	7	31	15	8	3	11
C4	10	43	17	7	5	36
C5	65	2	14	1	5	14
C6	54					45
C7			61			9
C8	13	13	16	7	5	2
C9	53	16	11	28	8	14
C10						
C11	29		55			12
C12	6	9	18	5	3	3
C13	5	28	16	5	3	3
C14	1		37	5	34	4
C15	44		75	26		

Andrew Farris

Table 4 - DAQ with Edge-bond

Accel (g)	1500	1500	1500	1500	2900	2900	2900	2900
Drops	325	350	279	355	190	170	175	173
Edge Bond	Heat	Heat	UV	UV	Heat	Heat	UV	UV
Component								
C 1						151	66	61
C2		342	276		133	127		119
C3	80	292	33	101	70	72	12	103
C4	236	255	257		63	16		100
C5						36	73	91
C6		55				44	37	60
C7						35	69	158
C8	201			85	113	20	84	83
С9				292		25	29	124
C10			277			12	59	
C11		193	178	103		65	38	
C12	66	76	52	162	53	24	23	16
C13	61	129	73	77	42	13	18	14
C14		232				42	44	120
C15	107		268		44	22	25	90

Table 5 - Post-drop with Edge-bond

Accel (g)	1500	1500	1500	1500	2900	2900	2900	2900
Drops	237	350	279	300	170	170	175	173
Edge Bond	Heat	Heat	UV	UV	Heat	Heat	UV	UV
Component								
C 1		304	62			12	23	
C2			101				34	98
C3	2		180	81	74	72		23
C4	2	292	99	242		25	13	
C5	60		62	262		40		151
C6	112	282	180			151		
C7		6						
C8	88			108		68	30	21
C9		132		283	116	106	53	
C10		112						
C11	3	292				112		
C12	1	36	188	162	137	57	154	128
C13	159	99	188	133	6	144	36	43
C14	60			243			151	
C15				297				

Agenda

- Introduction
- Test Vehicle
- Failure Detection Systems
- Reliability Data
- <u>Failure Analysis</u>
- Local Acceleration on Component Location
- Conclusions

Cracking Under Pads (Cratering)

Cracks develop underneath the copper pads, allowing the copper pad to lift away from the board

May 27 – 30, 2008

Andrew Farris

I/O Trace Failure

- Input/Output (I/O) traces that connect to the daisychain 'resistor' were often broken
- Many components had this broken trace and no other identifiable failure

Solder Fracture Failure

 Cross-sectioned solder joint is shown to be cracked near the board side copper pad

May 27 – 30, 2008

Andrew Farris

-23-

Solder Fracture Failure

- Cross-sectioned solder joint is shown to be cracked near the board side copper pad
- Copper trace failure also shown (left side)

May 27 - 30, 2008

Andrew Farris

-24-

Dye Stained Solder Fractures

Dye stained solder fractures were found

- Partial solder fracture (left) was not completely fractured before the component was removed
- Complete solder fracture (right) was fully fractured before the component was removed

-25-

May 27 – 30, 2008

Andrew Farris

Failure Mode Comparison

- I/O Trace and Daisy-chain Trace failures are both caused by pad cratering
- Pad cratering was present on 88% of electrically failed components, and is directly responsible for 69% of all electrical failures

Fa	ilures Aft	er 10 Dro	ops (No E	ZB)
11	12	13	14	15
6	7	8	9	10
2 3 1 1 4	2	3	4	5
The 58th Electronic Components and Technology Conference	May 27 – 30, 2008	Andrew Farris	CA	LPOLY

Failures After 14 Drops (No EB)

Failu	res After	325 Drop	os (Epoxy	EB)
11	12	13	14	15
6	7	8	9	10
2 3 1 1 4	2	3	4	5
The 58th Electronic Components and Technology Conference	May 27 – 30, 2008	Andrew Farris	——————————————————————————————————————	POLY -29

Cable Influence on PWB Loading

- Results from the comparison of failure detection methods
 - The DAQ system cable attached to the PWB appears to effects loading conditions
 - Fewer components fell off the DAQ tested boards than off the post-drop tested boards
 - The earliest component failure locations vary between DAQ and post-drop tested boards

-31-

Agenda

- Introduction
- Test Vehicle
- Failure Detection Systems
- Reliability Data
- Failure Analysis
- Local Acceleration on Component Location
- Conclusions

-32-

May 27 - 30, 2008

Blank PWB – No Cable vs Cable

- Symmetry of acceleration peaks has shifted (C7 vs C9)
- Maximums greatly reduced by cable (C3, C13, C8)

-36-

Populated PWB – No Edge Bond

• Dampening due to the cable seems less significant than with blank PWB (both graphs are more similar)

-37-

Epoxy Edge Bonded CSPs

- Stiffer board with edge bonding has less symmetry disturbance
- Overall accelerations are significantly reduced vs no edge-bond

-38-

Acrylic Edge Bonded CSPs

- Stiffer board with edge bonding has less symmetry disturbance
- Overall accelerations are significantly reduced vs no edge-bond

-39-

Conclusions

- Edge bonding significantly increases the reliability of lead-free CSPs in drop impact conditions
 - Increased drops to failure between 5x to 8x
 - The reliability increase of the two edge bond materials used did not differ significantly
- The component location on the test vehicle has a significant role in reliability

-40-

Conclusions

- Cohesive or adhesive failure between the PWB outer resin layer and the board fiberglass leads to pad cratering
- Pad cratering causes trace breakage that is the most common electrical failure mode for this specific lead-free test vehicle
- Board laminate materials are the weakest link in this lead-free test vehicle assembly, rather than the solder joints

-41-

Andrew Farris

<u>-43-</u>

Ά

Drop Impact Reliability

Mobile electronic devices

- Are prone to being dropped (or thrown)
- Are important to our everyday activities
- Are expected to 'just work' even after rough handling

-45-

Drop Test Reliability (cont.)

• Mobile electronic devices also...

- Are complicated and expensive
- Are easily damaged by drop impacts
- Are designed to be lightweight and portable
- Drop test reliability is:
 - The study of how well a device or part survives repeated drop impacts
 - A process to determine where design improvements are needed for future high reliability designs

-46-

Drop Impact Reliability

- Drop impact reliability testing evaluates the reliability of electronics when subjected to mechanical shock
 - Shock causes PWB bending that results in mechanical stress and strain in solder joints
- Generally focused on lead-free solder usage in consumer electronics (handheld products)
 - Due to governmental regulations pushing toward a leadfree market for these products

-47-

SMT Assembly (cont.)

• Stencil (DEK)

- 4 mil thick
- Electro-Polish
- 12 mil square
- Stencil Printing
 - Front/Rear Speed: 40 mm/s
 - Front/Rear Pressure: 12 kg
 - Squeegee length: 300mm
 - Separation Speed: 10 mm/s

-49-

Solder Reflow Profile

Definition: Drop Impact Failure

• Drop impact failure...

- Occurs when the electrical connections in the device are damaged so that it no longer functions as designed
- Is typically detected by change of resistance or loss of continuity in board level circuits
- May be either a permanent or intermittent condition

-52-

Andrew Farris

<u>LY</u>_-54-

Ά

Drop Impact Input Acceleration

Typical Half-sine

Acceleration Pulse

Time (sec)

-55-

e.g. 1500g - 0.5ms

or 2900g - 0.3ms

Lansmont MTS II Shock Tester

May 27 – 30, 2008

Andrew Farris

Acceleration (g's)

Ao

Data Acquisition System Summary

• DAQ system capabilities

- 17 channels (15 for the components, 1 each for power supply voltage and trigger)
- Sampling frequency of 50kHz per channel
 - Follows JEDEC standard recommendation
- 16 bit measurement accuracy (over 0-5V range)
- Store entire data set for later analysis
 - Tab-separated-text (CSV) data value tables
 - PDF format graphs of each measured channel

-57-

Post-Drop Resistance Measurement

- Uses a single resistance measurement per drop, taken after the board vibration ceases
- The failure criteria is a 10 ohm static rise from nominal daisy-chain resistance

- CALPOLY 58 -58-

Post-Drop Resistance Measurement

Advantage:

- No wires soldered to the test board, no interference with board mechanics
- Low cost system
- Disadvantages:
 - Cannot test in-situ dynamic response (during board deflection and vibration conditions)
 - Only one test per drop provides fairly poor resolution for when failure occurs
 - Not easily automated (operator must take readings)

-59-

PWB Loading Conditions

- JEDEC drop testing causes a complex PWB strain condition; not all solder joints experience the same stress and strain
 - Reliability and failure analysis must consider component location, drop count, and acceleration pulse profile

I/O Trace Failure Location

Failure Analysis

- Cross-sectioning with SEM and optical microscopy
- Dye penetrant method with optical microscopy
- Dominant failure modes
 - Trace fracture in board-side copper due to pad cratering
 - Solder fracture near board-side intermetallic layer

-62-

Local Acceleration Conditions

- Using two accelerometers, the acceleration profile of the board at each component location was tested
- Eight board variations
 - Blank PWB, Populated, with edge bond, and without edge bond
 - With and without DAQ cable soldered into the board

-63-

Cable Influence on Acceleration

- Symmetry of acceleration/deflection/strain is effected:
 - A cable soldered to the PWB will effect the test conditions for any test vehicle assembly
 - Components cannot be grouped as liberally for reliability statistics if test conditions at their locations are not similar
- Lightest possible wire gauge should be used
 - But must provide reliable through-hole solder joints

-64-